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Abstract—Fish-eye lenses are convenient in such applications where a very wide

angle of view is needed, but their use for measurement purposes has been limited

by the lack of an accurate, generic, and easy-to-use calibration procedure. We

hence propose a generic camera model, which is suitable for fish-eye lens cameras

as well as for conventional and wide-angle lens cameras, and a calibration method

for estimating the parameters of the model. The achieved level of calibration

accuracy is comparable to the previously reported state-of-the-art.

Index Terms—Camera model, camera calibration, lens distortion, fish-eye lens,

wide-angle lens.
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1 INTRODUCTION

THE pinhole camera model accompanied with lens distortion

models is a fair approximation for most conventional cameras with

narrow-angle or even wide-angle lenses [1], [2], [3]. But, it is still

not suitable for fish-eye lens cameras. Fish-eye lenses are designed

to cover the whole hemispherical field in front of the camera and

the angle of view is very large, about 180�. Moreover, it is

impossible to project the hemispherical field of view on a finite

image plane by a perspective projection, so fish-eye lenses are

designed to obey some other projection model. This is the reason
why the inherent distortion of a fish-eye lens should not be

considered only as a deviation from the pinhole model [4].

There have been some efforts to model the radially symmetric

distortion of fish-eye lenses with different models [5], [6], [7]. The

idea in many of these approaches is to transform the original fish-eye

image to follow the pinhole model. In [6] and [7], the parameters of

the distortion model are estimated by forcing straight lines straight

after the transformation, but the problem is that the methods do not

give the full calibration. They can be used to “correct” the images to

follow the pinhole model but their applicability is limited when one

needs to know the direction of a back-projected ray corresponding to

an image point. The calibration procedures in [8] and [9] instead aim

at calibrating fish-eye lenses generally. However, these methods are

slightly cumbersome, in practice, because a laser beam or a

cylindrical calibration object is required.

Recently, the first autocalibration methods for fish-eye lens

cameras have also emerged [10], [11], [12]. Mi�ccu�ssı́k and Pajdla [10]

proposed a method for simultaneous linear estimation of epipolar

geometry and an omnidirectional camera model. Claus and

Fitzgibbon [11] presented a distortion model which likewise

allows the simultaneous linear estimation of camera motion and

lens geometry, and Thirthala and Pollefeys [12] used the multi-

view-view geometry of radial 1D cameras to estimate a nonpara-

metric camera model. In addition, the recent work by Barreto and

Daniilidis [13] introduced a radial fundamental matrix for

correcting the distortion of wide-angle lenses. Nevertheless, the

emphasis in these approaches is more in the autocalibration

techniques than in the precise modeling of real lenses.

In this paper, we concentrate on accurate geometric modeling of

real cameras.1 We propose a novel calibration method for fish-eye

lenses that requires that the camera observes a planar calibration

pattern. The calibration method is based on a generic camera

model that will be shown to be suitable for different kind of

omnidirectional cameras as well as for conventional cameras. First,

in Section 2, we present the camera model and, in Section 3,

theoretically justify it by comparing different projection models. In

Section 4, we describe a procedure for estimating the parameters of

the camera model, and the experimental results are presented and

discussed in Sections 5 and 6.

2 GENERIC CAMERA MODEL

Since the perspective projection model is not suitable for fish-eye

lenses we use a more flexible radially symmetric projection model.

This basic model is introduced in Section 2.1 and then extended with

asymmetric distortion terms in Section 2.2. Computation of back-

projections is described in Section 2.3.

2.1 Radially Symmetric Model

The perspective projection of a pinhole camera can be described by

the following formula

r ¼ f tan � ði: perspective projectionÞ; ð1Þ

where � is the angle between the principal axis and the incoming

ray, r is the distance between the image point and the principal

point, and f is the focal length. Fish-eye lenses instead are usually

designed to obey one of the following projections:

r ¼ 2f tanð�=2Þ ðii: stereographic projectionÞ; ð2Þ
r ¼ f� ðiii: equidistance projectionÞ; ð3Þ
r ¼ 2f sinð�=2Þ ðiv: equisolid angle projectionÞ; ð4Þ
r ¼ f sinð�Þ ðv: orthogonal projectionÞ: ð5Þ

Perhaps the most common model is the equidistance projection.

The behavior of the different projections is illustrated in Fig. 1a and

the difference between a pinhole camera and a fish-eye camera is

shown in Fig. 1b.

The real lenses do not, however, exactly follow the designed

projection model. From the viewpoint of automatic calibration, it

would also be useful if we had only one model suitable for

different types of lenses. Therefore, we consider projections in the

general form

rð�Þ ¼ k1�þ k2�
3 þ k3�

5 þ k4�
7 þ k5�

9 þ . . . ; ð6Þ

where, without any loss of generality, even powers have been

dropped. This is due to the fact that we may extend r onto the

negative side as an odd function while the odd powers span the set

of continuous odd functions. For computations, we need to fix the

number of terms in (6). We found that first five terms, up to the ninth

power of �, give enough degrees of freedom for good approximation

of different projection curves. Thus, the radially symmetric part of

our camera model contains the five parameters, k1; k2; . . . ; k5.

Let F be the mapping from the incoming rays to the normalized

image coordinates
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x
y

� �
¼ rð�Þ cos’

sin’

� �
¼ Fð�Þ; ð7Þ

where rð�Þ contains the first five terms of (6) and � ¼ ð�; ’Þ> is the

direction of the incoming ray. For real lenses, the values of

parameters ki are such that rð�Þ is monotonically increasing on the

interval ½0; �max�, where �max is the maximum viewing angle.

Hence, when computing the inverse of F , we may solve � by

numerically finding the roots of a ninth order polynomial and then

choosing the real root between 0 and �max.

2.2 Full Model

Real lenses may deviate from precise radial symmetry and,

therefore, we supplement our model with an asymmetric part.

For instance, the lens elements may be inaccurately aligned

causing that the projection is not exactly radially symmetric. With

conventional lenses, this kind of distortion is called decentering

distortion [1], [15]. However, there are also other possible sources

of imperfections in the optical system and some of them may be

difficult to model. For example, the image plane may be tilted with

respect to the principal axis or the individual lens elements may

not be precisely radially symmetric. Therefore, instead of trying to

model all different physical phenomena in the optical system

individually, we propose a flexible mathematical distortion model

that is just fitted to agree with the observations.

To obtain a widely applicable, flexible model, we propose to

use two distortion terms as follows: One distortion term acts in the

radial direction

�rð�; ’Þ ¼
ðl1�þ l2�3 þ l3�5Þði1 cos’þ i2 sin’þ i3 cos 2’þ i4 sin 2’Þ;

ð8Þ

and the other in the tangential direction

�tð�; ’Þ ¼
ðm1�þm2�

3 þm3�
5Þðj1 cos’þ j2 sin’þ j3 cos 2’þ j4 sin 2’Þ;

ð9Þ

where the distortion functions are separable in the variables � and’.

Because the Fourier series of any 2�-periodic continuous function

converges in the L2-norm and any continuous odd function can be

represented by a series of odd polynomials we could, in principle,

model any kind of continuous distortion by simply adding more

terms to (8) and (9), as they both now have seven parameters.
By adding the distortion terms to (7), we obtain the distorted

coordinates xd ¼ ðxd; ydÞ> by

xd ¼ rð�Þurð’Þ þ�rð�; ’Þurð’Þ þ�tð�; ’Þu’ð’Þ; ð10Þ

where urð’Þ and u’ð’Þ are the unit vectors in the radial and

tangential directions. To achieve a complete camera model, we still

need to transform the sensor plane coordinates into the image pixel

coordinates. By assuming that the pixel coordinate system is

orthogonal, we get the pixel coordinates ðu; vÞ> from

u
v

� �
¼ mu 0

0 mv

� �
xd

yd

� �
þ u0

v0

� �
¼ AðxdÞ; ð11Þ

where ðu0; v0Þ> is the principal point and mu and mv give the

number of pixels per unit distance in horizontal and vertical

directions, respectively.

By combining (10) and (11), we have the forward camera model

m ¼ Pcð�Þ; ð12Þ

where m ¼ ðu; vÞ>. This full camera model contains 23 parameters

and it is denoted by p23 in the following. Since the asymmetric part

of the model is very flexible, it may sometimes be reasonable to use

a reduced camera model in order to avoid over-fitting. This is the

case if, for instance, the control points do not cover the whole

image area. Leaving out the asymmetric part gives the camera

model p9 with nine parameters: five in the radially symmetric part

(7) and four in the affine transformation (11). We did experiments

also with the six-parametric model p6 which contains only two

parameters in the radially symmetric part.

2.3 Backward Model

Above, we have described our forward camera model Pc. In

practice, one also needs to know the backward model

� ¼ P�1
c ðmÞ; ð13Þ

which is the mapping from the image point m ¼ ðu; vÞ> to the

direction of an incoming light ray, � ¼ ð�; ’Þ>. We write Pc as the

composite function Pc ¼ A � D � F , where F is the transformation

(7) from the ray direction � to the ideal Cartesian coordinates x ¼
ðx; yÞ> on the image plane,D is the distortion mapping from x to the

distorted coordinates xd ¼ ðxd; ydÞ> and A is the affine transforma-

tion (11). We decompose the projection model in this form because,

for the inverse transform P�1
c ¼ F�1 � D�1 � A�1, it is straightfor-

ward to compute F�1 and A�1. The more difficult part is to

numerically compute D�1.

Given a point xd, finding x ¼ D�1ðxdÞ is equivalent to

computing the shift s into the expression x ¼ xd � s, where

s ¼ Sð�Þ ¼ �rð�; ’Þurð’Þ þ�tð�; ’Þu’ð’Þ: ð14Þ

Moreover, we may write Sð�Þ � ðS � F�1ÞðxÞ and approximate the

shift by the first order Taylor expansion of S � F�1 around xd that

yields

s ’ ðS � F�1ÞðxdÞ þ
@ðS � F�1Þ

@x
ðxdÞðx� xdÞ

¼ Sð�dÞ �
@S
@�

@F
@�
ð�dÞ

� ��1

s;

where �d ¼ F�1ðxdÞ may be numerically evaluated. Hence, we

may compute the shift s from

s ’ I þ @S
@�
ð�dÞ

@F
@�
ð�dÞ

� ��1
 !�1

Sð�dÞ; ð15Þ

where the Jacobians @S=@� and @F=@� may be computed from

(14) and (7), respectively. So, finally,
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Fig. 1. (a) Projections (1), (2), (3), (4), and (5) with f ¼ 1. (b) Fish-eye camera

model. The image of the point P is p whereas it would be p0 by a pinhole camera.



D�1ðxdÞ ’ xd�

I þ @S
@�
� F�1

� �
ðxdÞ

@F
@�
� F�1

� �
ðxdÞ

� ��1
 !�1

ðS � F�1ÞðxdÞ:

ð16Þ

It seems that the first order approximation for the asymmetric

distortion function D is tenable, in practice, because the backward

model error is typically several degrees smaller than the calibration

accuracy for the forward model, as will be seen in detail in Section 5.

3 JUSTIFICATION OF THE PROJECTION MODEL

The traditional approach for camera calibration is to take the

perspective projection model as a starting point and then supple-

ment it with distortion terms [1], [3], [16]. However, this is not a

valid approach for fish-eye lenses because, when � approaches �=2,

the perspective model projects points infinitely far and it is not

possible to remove this singularity with the conventional distortion

models. Hence, we base our calibration method to the more generic

model (6).

We compared the polynomial projection model (6) to the two

two-parametric models

r ¼ a
b

sinðb�Þ ðM1Þ and r ¼ a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4b�2
p

2b�
ðM2Þ;

proposed by Mi�ccu�ssı́k [17] for fish-eye lenses. In Fig. 2, we have

plotted the projection curves (1), (2), (3), (4), and (5) and their least-

squares approximations with models M1, M2, and P3, where P3 is

the polynomial model (6) with the first two terms. Here, we used the

value f ¼ 200 pixels which is a reasonable value for a real camera.

The projections were approximated between 0 and �max, where the

values of �max were 60�, 110�, 110�, 110�, and 90�, respectively. The

interval ½0; �max� was discretized using the step of 0:1� and the

models M1 and M2 were fitted by using the Levenberg-Marquardt

method. It can be seen from Fig. 2 that the modelM1 is not suitable at

all for the perspective and stereographic projections and that the

model M2 is not accurate for the orthogonal projection.

In Table 1, we have tabulated the maximum approximation

errors for each model, i.e., the maximum vertical distances between

the desired curve and the approximation in Fig. 2. Here, we also

have the model P9 which is the polynomial model (6) with the first

five terms. It can be seen that the model P3 has the best overall

performance from all of the two-parametric models and that the

sub-pixel approximation accuracy for all the projection curves

requires the five-parametric model P9. These results show that the

radially symmetric part of our camera model is well justified.

4 CALIBRATING THE GENERIC MODEL

Next, we describe a procedure for estimating the parameters of the

camera model. The calibration method is based on viewing a

planar object which contains control points in known positions.

The advantage over the previous approaches is that also fish-eye

lenses, possibly having a field of view larger than 180�, can be

calibrated by simply viewing a planar pattern. In addition, a good

accuracy can be achieved if circular control points are used, as

described in Section 4.2.

4.1 Calibration Algorithm

The calibration procedure consists of four steps that are described

below. We assume that M control points are observed in N views.

For each view, there is a rotation matrix Rj and a translation vector tj
describing the position of the camera with respect to the calibration

plane such that

Xc ¼ RjXþ tj; j ¼ 1; . . . ; N: ð17Þ

We choose the calibration plane to lie in the XY -plane and denote

the coordinates of the control point i with Xi ¼ ðXi; Y i; 0Þ>. The

corresponding homogeneous coordinates in the calibration plane

are denoted by xip ¼ ðXi; Y i; 1Þ> and the observed coordinates in

the view j by mi
j ¼ ðuij; vijÞ

>. The first three steps of the calibration

procedure involve only six internal camera parameters and for

these we use the short-hand notation p6¼̂¼ðk1; k2;mu;mv; u0; v0Þ.
The additional parameters of the full model are inserted only in

the final step.

Step 1: Initialization of internal parameters. The initial guesses

for k1 and k2 are obtained by fitting the model r ¼ k1�þ k2�
3 to the

desired projection, (1)-(5), with the manufacturer’s values for the

nominal focal length f and the angle of view �max. Then, we also

obtain the radius of the image on the sensor plane by

rmax ¼ k1�max þ k2�
3
max.

With a circular image fish-eye lens, the actual image fills only a

circular area inside the image frames. In pixel coordinates, this

circle is an ellipse

u� u0

a

� �2
þ v� v0

b

� �2
¼ 1;

whose parameters can be estimated. Consequently, we obtain

initial guesses for the remaining unknowns mu, mv, u0, and v0 in p,

where mu ¼ a=rmax and mv ¼ b=rmax. With a full-frame lens, the

best thing is probably to place the principal point to the image

center and use the reported values of the pixel dimensions to

obtain initial values for mu and mv.

Step 2: Back-projection and computation of homographies.

With the internal parameters p6, we may back-project the observed
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Fig. 2. Approximations.

TABLE 1
The Approximation Errors



points mi
j onto the unit sphere centered at the camera origin (see

Fig. 1b). The points on the sphere are denoted by ~xxij. Since the

mapping between the points on the calibration plane and on the

unit sphere is a central projection, there is a planar homography Hj

so that s~xxij ¼ Hjx
i
p.

For each view j the homography Hj is computed as follows:

1. Back-project the control points by first computing the

normalized image coordinates

xij

yij

0
@

1
A ¼ 1=mu 0

0 1=mv

� �
uij � u0

vij � v0

� �
;

transforming them to the polar coordinates ðrij; ’ijÞ¼
^ ðxij; yijÞ

and, finally, solving �ij from the cubic equation

k2ð�ijÞ
3þk1�

i
j � rij¼0.

2. Set ~xxij ¼ ðsin’ij sin �ij;cos’ij sin �ij; cos �ijÞ.
3. Compute the initial estimate for Hj from the correspon-

dences ~xxij $ xip by the linear algorithm with data normal-
ization [18]. Define x̂xij as the exact image of xip under Hj such
that x̂xij ¼ Hjx

i
p=jjHjx

i
pjj.

4. Refine the homography Hj by minimizing
P

i sin2 �ij,

where �ij is the angle between the unit vectors ~xxij and x̂xij.

Step 3: Initialization of external parameters. The initial values

for the external camera parameters are extracted from the

homographies Hj. It holds that

s~xxij ¼ Rj tj½ �
Xi

Y i

0
1

0
BB@

1
CCA ¼ r1

j r2
j tj

	 
 Xi

Y i

1

0
@

1
A;

which implies Hj ¼ ½r1
j r2

j tj�, up to scale. Furthermore,

r1
j ¼ �jh1

j ; r2
j ¼ �jh2

j ; r3
j ¼ r1

j � r2
j ; tj ¼ �jh3

j ;

where �j ¼ signðH3;3
j Þ=jjh1

j jj. Because of estimation errors, the

obtained rotation matrices are not orthogonal. Thus, we use the

singular value decomposition to compute the closest orthogonal

matrices in the sense of Frobenius norm [19] and use them as initial

guess for each Rj.
Step 4: Minimization of projection error. If the full model p23 or

the model p9 is used the additional camera parameters are

initialized to zero at this stage. As we have the estimates for the

internal and external camera parameters, we use (17), (7) or (10), and

(11) to compute the imaging function Pj for each camera, where a

control point is projected to m̂mi
j ¼ PjðXiÞ. The camera parameters

are refined by minimizing the sum of squared distances between the

measured and modeled control point projections

XN
j¼1

XM
i¼1

dðmi
j; m̂m

i
jÞ

2 ð18Þ

using the Levenberg-Marquardt algorithm.

4.2 Modification for Circular Control Points

In order to achieve an accurate calibration, we used a calibration

plane with white circles on black background since the centroids of

the projected circles can be detected with a subpixel level of

accuracy [20]. In this setting, however, the problem is that the

centroid of the projected circle is not the image of the center of the

original circle. Therefore, since mi
j in (18) is the measured centroid,

we should not project the centers as points m̂mi
j.

To avoid the problem above, we propose solving the

centroids of the projected circles numerically. We parameterize

the interior of the circle at (X0; Y0) with radius R by

Xð%; �Þ ¼ ðX0 þ % sin�; Y0 þ % cos�; 0Þ>. Given the camera para-

meters, we get the centroid m̂m for the circle by numerically

evaluating

m̂m ¼
RR

0

R 2�
0 m̂mð%; �Þjdet Jð%; �Þj d�d%RR
0

R 2�
0 jdet Jð%; �Þj d�d%

; ð19Þ

where m̂mð%; �Þ ¼ PðXð%; �ÞÞ and Jð%; �Þ is the Jacobian of the

composite function P �X. The analytical solving of the Jacobian is

a rather tedious task, but it can be computed by mathematical

software such as Maple.

5 CALIBRATION EXPERIMENTS

5.1 Conventional and Wide-Angle Lens Camera

The proposed camera model was compared to the camera model

used by Heikkilä [3]. This model is the skew-zero pinhole model

accompanied with four distortion parameters and it is denoted by

����8 in the following.

In the first experiment, we used the same data, provided by

Heikkilä, as in [3]. It was originally obtained by capturing a single

image of a calibration object consisting of two orthogonal planes,

each with 256 circular control points. The camera was a

monochrome CCD camera with a 8.5 mm Cosmicar lens. The

second experiment was performed with the Sony DFW-VL500

camera and a wide-angle conversion lens, with total focal length of

3.8 mm. In this experiment, we used six images of the calibration

object. There were 1,328 observed control points in total and they

were localized by computing their gray-scale centroids [20].

The obtained RMS residual errors, i.e., the root-mean-squared

distances between the measured and modeled control point

positions, are shown in Table 2. Especially interesting is the

comparison between models ����8 and p9 because they both have

eight degrees of freedom. Model p9 gave slightly smaller residuals

although it does not contain any tangential distortion terms. The

full model p23 gave the smallest residuals.

However, in the first experiment the full model may have been

partly fitted to the systematic errors of the calibration data. This is

due to the fact that there were measurements only from one image

where the illumination was not uniform and all corners were not

covered by control points. To illustrate the fact, the estimated

asymmetric distortion and remaining residuals for the model p23

are shown in Fig. 3. The relatively large residuals in the lower right

corner of the calibration image (Fig. 3b) seem to be due to

inaccurate localization, caused by nonuniform lighting.

In the second experiment, the calibration data was better, so the

full model is likely to be more useful. This was verified by taking

an additional image of the calibration object and solving the

corresponding external camera parameters with given internal

parameters. The RMS projection error for the additional image was

0:049 pixels for p23 and 0:071 for p9. This indicates that the full

model described the true geometry of the camera better than the

simpler model p9.
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TABLE 2
The RMS Residual Error in Pixels



Finally, we estimated the backward model error for p23, caused

by the first order approximation of the asymmetric distortion

function (see Section 2.3). This was done by back-projecting each

pixel and then reprojecting the rays. The maximum displacement

in the reprojection was 2:1 � 10�5 pixels for the first camera and

4:6 � 10�4 pixels for the second. Both values are very small so it is

justified to ignore the backward model error in practice.

5.2 Fish-Eye Lens Cameras

The first experimented fish-eye lens was an equidistance lens with

the nominal focal length of 1.178 mm and it was attached to a

Watec 221S CCD color camera. The calibration object was a 2� 3

m2 plane containing white circles with the radius of 60 mm on the

black background. The calibration images were digitized from an

analog video signal to 8-bit monochrome images, whose size was

640 by 480 pixels.

The calibration of a fish-eye lens can be performed even from a

single image of the planar object as Fig. 4 illustrates. In that

example, we used the model p6 and 60 control points. However,

for the most accurate results, the whole field of view should be

covered with a large number of measurements. Therefore, we

experimented our method with 12 views and 680 points in total;

the results are in Table 3. The extended model p23 had the smallest

residual error but the radially symmetric model p9 gave almost as

good results. Nevertheless, there should be no risk of overfitting

because the number of measurements is large. The estimated

asymmetric distortion and the residuals are displayed in Fig. 5.

The second fish-eye lens was ORIFL190-3 lens manufactured by

Omnitech Robotics. This lens has a 190 degree field of view and it

clearly deviates from the exact equidistance projection model. The

lens was attached to a Point Grey Dragonfly digital color camera

having 1; 024� 768 pixels; the calibration object was the same as in

Section 5.1. The obtained RMS residual errors for a set-up of

12 views and 1,780 control points are shown in Table 3. Again, the

full model had the best performance and this was verified with an

additional calibration image. The RMS projection error for the

additional image, after fitting the external camera parameters, was

0:13 pixels for p23 and 0:16 pixels for p9. The backward model error

for p23 was evaluated at each pixel within the circular images. The

maximum displacement was 9:7 � 10�6 pixels for the first camera

and 3:4 � 10�3 pixels for the second. Again, it is justified to ignore

such small errors in practice.

5.3 Synthetic Data

In order to evaluate the robustness of the proposed calibration

method we did experiments also with synthetic data. The ground

truth values for the camera parameters were obtained from the real

fish-eye lens experiment that was illustrated in Fig. 5. So, we used the

full camera model and we had 680 circular control points in

12 synthetic calibration images, where the gray level values of

control points and background were 180 and 5, respectively. In order

to make the synthetic images to better correspond real images, they

were blurred by a Gaussian pdf (� ¼ 1 pixel) and quantized to the

256 gray levels.

First, we estimated the significance of the centroid correction

proposed in Section 4.2. In the above setting the RMS distance

between the centroids of the projected circles and the projected

centers of the original circles was 0.45 pixels. It is a significantly

larger value than the RMS residual errors reported in the real

experiment (Table 3). This indicates that, without the centroid

correction, the estimated camera parameters would have been

biased and it is likely that the residual error would have been larger.

Second, we estimated the effect of noise to the calibration by

adding Gaussian noise to the synthetic images and performing

10 calibration trials at each noise level. The standard deviation of the

noise varied between 0 and 15 pixels. The control points were

localized from the noisy images by first thresholding them using a

fixed threshold. Then, the centroid of each control point was

measured by computing the gray-level-weighted center-of-mass.

The simulation results are shown in Fig. 6, where we have

plotted the average RMS measurement, RMS residual and RMS

estimation errors. There is small error also at the zero noise level

because of the discrete pixel representation and gray level

quantization. The fact that the RMS errors approximately satisfy
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Fig. 3. Heikkilä’s calibration data. (a) The estimated asymmetric distortion

(�rurþ�tu’) using the extended model p23. (b) The remaining residual for each

control point. The vectors are scaled up by a factor of 150.

Fig. 4. Fish-eye lens calibration using only one view. (a) Original image where the

ellipse depicts the field of view of 150�. (b) The image corrected to follow pinhole

model. Straight lines are straight as they should be.

TABLE 3
The RMS Residual Error in Pixels

Fig. 5. (a) The estimated asymmetric distortion (�rurþ�tu’) using the extended

model p23. (b) The remaining residual for each control point that shows no obvious

systematic error. Both plots are in normalized image coordinates and the vectors

are scaled up by a factor of 150 to aid inspection.



the Pythagorean equality indicates that the calibration algorithm

has converged to the true global minimum [18]. Moreover, the low

values of the RMS estimation error indicate that the estimated

camera model is close to the true one even at large noise levels.

6 CONCLUSION

We have proposed a novel camera calibration method for fish-eye

lens cameras that is based on viewing a planar calibration pattern.

The experiments verify that the method is easy-to-use and

provides a relatively high level of accuracy with circular control

points. The proposed camera model is generic, easily expandable,

and suitable also for conventional cameras with narrow or wide-

angle lenses. The achieved level of accuracy for fish-eye lenses is

better than it has been reported with other approaches and, for

narrow-angle lenses, it is comparable to the results in [3]. This is

promising considering especially the aim of using fish-eye lenses

in measurement purposes. The calibration method is implemented

as a calibration toolbox on Matlab and is available on the authors’

Web page.
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Fig. 6. The average RMS measurement, residual, and estimation errors for

10 calibration trials at different levels of noise. The errorbars represent the

minimum and maximum values among the trials.
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