多视图几何第一章+第二章总结

项目名称	1D	2D	3D	备注
点的齐次表示	$p_{1d} = (x, 1)^T = (kx, k)^T$	$p_{2d} = (x, y, 1)^T = (kx, ky, k^T)$	$P_{3d} = (X, Y, Z, 1)^T = (kX, kY, kZ, k^T)$	
无穷远点	$(x_1, 0)^T$	$(x_1, x_2, 0)^T$	$(x_1, x_2, x_3, 0)^T$	
直线	/	$l = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$	$W = \begin{pmatrix} A^T \\ B^T \end{pmatrix}$ 张成子空间表示 $W^* = \begin{pmatrix} P^T \\ Q^T \end{pmatrix}$ 张成子空间表示 $L = AB^T - BA^T \\ L^* = PQ^T - QP^T $ Plucker 矩阵表示 $\mathcal{L} = \{l_{12}, l_{13}, l_{14}, l_{23}, l_{42}, l_{34}\}$ Plucker 坐标表示	$x = l \times l$ $l = x \times x'$ $l^T x = 0$ 美孫 两点确定一条直线 点位于直线上
—————————————————————————————————————	/	$l_{\infty} = (0,0,1)^T$		
二次曲线	/	$C = \begin{bmatrix} a & b/2 & d/2 \\ b/2 & c & e/2 \\ d/2 & e/2 & f \end{bmatrix}$ $c = (a, b, c, d, e, f)^{T}$		$x^T C x = 0$
对偶二次曲线	/	$C^* = C^{-1}$		$l^TC^*l = 0$ 对偶二次曲线C * 与过C * 上点x的切线 l
退化二次曲线	/	$C = lm^T + ml^T$ $C = ll^T$		FOR A VINE VERSOR - JEG + TWV0ANSE
退化的对偶二次曲线	/	$C = xy^T + yx^T$ $C = xx^T$		
虚圆点	/	$I = (1, i, 0)^T, J = (1, -i, 0)^T$		
虚圆点确定的 退化的对偶二次曲线	/	$C_{\infty}^{*} = \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} (1 - i \ 0) + \begin{pmatrix} 1 \\ -i \\ 0 \end{pmatrix} (1 \ i \ 0) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ l_{∞} 是 C_{∞} 的零矢量.		
配极	/	点 x 和二次曲线 C 定义一条直线 $l=Cx$. l 称为 x 关于 C 的极线,而点 x 称为 l 关于 C 的极点。 点 x 关于二次曲线 C 的极线 $l=Cx$ 与 C 交于两点。 C 的过这两点的两条切线相交于 x	平面π = Qx 称为是X关于Q的极平面. 当Q为非奇异并且X在二次曲面之外时,极平面由过X且与Q相切的射线组成的锥与Q相接触的点来定义. 如果X在Q上,那么QX是Q在点X的切平面	
平面	/	/	$\boldsymbol{\pi} = (\pi_1, \pi_2, \pi_3, \pi_4)^T$	$\pi^T X = 0$ $[\pi_1, \pi_2, \pi_3]^T X = 0$ (3平面确定一个点) $[X_1, X_2, X_3]^T \pi = 0$ (3点确定一个平面)
无穷远面	/	/	$\pi_{\infty} = (0,0,0,1)^T$	
二次曲面	/	/	$Q = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} = \begin{bmatrix} A & F & E & G \\ F & B & D & H \\ E & D & C & I \\ G & H & I & J \end{bmatrix}$	
对偶二次曲面	/	/	$Q^* = adjointQ$	
绝对二次曲线	/	/	Ω_{∞}	
<u>偶绝对二次曲面</u>	/	,	$Q_{\infty}^{*} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$	
点的变换公式	H_{2x2}	x' = Hx	$\mathbf{X}' = \mathbf{H}\mathbf{X}$	
直线的变换公式	/	$l' = H^{-T}l$	同2D,只是变换矩阵为4维,对不对?	
二次曲线的变换 对偶二次曲线的变换	/	$C' = \mathbf{H}^{-T}C\mathbf{H}^{-1}$	同2D,只是变换矩阵为4维,对不对?	
对偶—次曲线的变换 平面的变换公式	/	$C^{*\prime} = HC^*H^{\mathrm{T}}$	同2D,只是变换矩阵为4维,对不对? π' = H ^{-T} π	
二次曲面变换	/	/	$\pi' = H^{-1}\pi$ $Q' = H^{-T}QH^{-1}$	X ^T QX = 0 二次曲面上点x与二次曲面Q的关系
对偶二次曲面变换公式	/	/	$Q^{*'} = HQ^*H^T$	

有兴趣可以把这份总结完善一下,作为后续的自学的参考公式;这两章难度不大,

第3章才是研究生层次要学的内容的基础;